14,070 research outputs found

    Hard Cosmic Ray Sea in the Galactic Center: a consistent interpretation of H.E.S.S. and Fermi-LAT γ\gamma-ray data

    Full text link
    We present a novel interpretation of the gamma-ray diffuse emission measured by H.E.S.S. in the Galactic Center (GC) region and the Galactic ridge. Our starting base is an updated analysis of PASS8 Fermi-LAT data, which allows to extend down to few GeV the spectra measured by H.E.S.S. and to infer the primary CR radial distribution above 100 GeV. We compare those results with a CR transport model assuming a harder scaling of the diffusion coefficient with rigidity in the inner Galaxy. Such a behavior reproduces the radial dependence of the CR spectral index recently inferred from Fermi-LAT measurements in the inner GP. We find that, in this scenario, the bulk of the Galactic ridge emission can be naturally explained by the interaction of the diffuse, steady-state Galactic CR sea interacting with the gas present in the Central molecular zone. The evidence of a GC PeVatron is significantly weaker than that inferred adopting a conventional (softer) CR sea.Comment: Oral contribution to the International Cosmic Ray Conference (ICRC 2017), 12-20 July 2017, Bexco, Busan, Kore

    The two gap transitions in Ge1−x_{1-x}Snx_x: effect of non-substitutional complex defects

    Full text link
    The existence of non-substitutional β\beta-Sn defects in Ge1−x_{1-x}Snx_{x} was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that although most Sn enters substitutionally (α\alpha-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration ( β\beta-Sn ), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present our electronic structure calculation for Ge1−x_{1-x}Snx_{x}, including substitutional α\alpha-Sn as well as non-substitutional β\beta-Sn defects. To include the presence of non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Jenkins and Dow, Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β\beta-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1−x_{1-x}Snx_{x} as a function of the total Sn-concentration: namely from an indirect to a direct gap, first, and the metallization transition at higher xx. They also highlight the role of β\beta-Sn in the reduction of the concentration range which corresponds to the direct-gap phase of this alloy, of interest for optoelectronics applications.Comment: 11 pages, 9 Figure

    The helium spread in the Globular cluster 47 Tuc

    Full text link
    Spectroscopy has shown the presence of the CN band dicothomy and the Na-O anticorrelations for 50--70% of the investigated samples in the cluster 47 Tuc, otherwise considered a "normal" prototype of high metallicity clusters from the photometric analysis. Very recently, the re-analysis of a large number of archival HST data of the cluster core has been able to put into evidence the presence of structures in the Sub Giant Branch: it has a brighter component with a spread in magnitude by ∼\sim0.06 mag and a second one, made of about 10% of stars, a little fainter (by ∼\sim0.05 mag). These data also show that the Main Sequence of the cluster has an intrinsic spread in color which, if interpreted as due to a small spread in helium abundance, suggests Δ\DeltaY∼\sim0.027. In this work we examine in detail whether the Horizontal Branch morphology and the Sub Giant structure provide further independent indications that a real --although very small-helium spread is present in the cluster. We re--analyze the HST archival data for the Horizontal Branch of 47 Tuc, obtaining a sample of ∼\sim500 stars with very small photometric errors, and build population synthesis based on new models to show that its particular morphology can be better explained by taking into account a spread in helium abundance of 2% in mass. The same variation in helium is able to explain the spread in luminosity of the Sub Giant Branch, while a small part of the second generation is characterized by a small C+N+O increase and provides an explanation for the fainter Sub Giant Branch. We conclude that three photometric features concur to form the paradigm that a small but real helium spread is present in a cluster that has no spectacular evidence for multiple populations like those shown by other massive clusters.Comment: Accepted for publication in the MNRAS on 2010 June 8. Received 2010 May 19; in original form 2010 February 9. 7 pages and 3 figures. No table

    WHO IS MY NEIGHBOR? The Importance of Global Education for Kinesiology Students

    Get PDF
    The parable of the Samaritan in the Gospel of Luke illustrates that helping others requires both the ability to reach out to any person and the humility to receive mercy from any person. This active love requires a basic understanding of culture and the ways in which it may affect the values and actions of others. As believers seeking to express God in careers that bring them in contact with any person, kinesiology students have a specific need to understand their global neighbors. This paper first explores the importance of multicultural education as illustrated in the book of Acts and the epistles to the churches. Educational outcomes for guiding students through different stages of intercultural sensitivity are provided. Finally, examples of multicultural programs that colleges and universities are implementing in the health professions are presented
    • …
    corecore